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Abstract

The distributed model intercomparison project (DMIP) was formulated as a broad comparison of many distributed models

amongst themselves and to a lumped model used for operational river forecasting in the US. DMIP was intended to provide

guidance on research and implementation directions for the US National Weather Service as well as to address unresolved

questions on the variability of rainfall and its effect on basin response. Twelve groups participated, including groups from

Canada, China, Denmark, New Zealand, and the US. Numerous data sets including seven years of concurrent radar-rainfall and

streamflow data were provided to participants through web access. Detailed modeling instructions specified calibration and

verification periods and modeling points. Participating models were run in ‘simulation’ mode without a forecast component.

DMIP proved to be a successful endeavour, providing the hydrologic research and forecasting communities with a wealth of

results. This paper presents the background and motivations for DMIP and describes the major project elements.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The distributed model intercomparison project

(DMIP) arose out of the convergence of several

factors. First, the National Oceanic and Atmospheric

Administration’s National Weather Service

(NOAA/NWS) recognized the need to infuse new

science into its river forecasting capability. Second,

the continued proliferation of geographic information

system (GIS) data sets and exponential increases in

computer capabilities have largely removed historical

barriers from the path for development of complex

distributed models. Finally, but certainly not the least

important, large questions remain regarding the effect

of the variability of precipitation and basin properties

on runoff response. Related to these questions is the

choice of model or approach to best exploit variability

information to generate improved outlet simulations

and to provide useful information at ungaged interior

points. In this section, we begin with a brief discussion

of the specific motivation for distributed models from

the NWS perspective. After this, we will discuss

several scientific motivations for launching DMIP.

Subsequent sections of this paper will describe
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the DMIP goals, design, data, participants, and

modeling instructions. A companion paper (Reed

et al., 2004, this issue) presents the analyses,

conclusions, and recommendations of the DMIP

project. Beyond presenting the motivations for

DMIP, the purpose of this paper is to discuss the

major project elements so as to avoid needless

repetition in subsequent contributions in this issue.

1.1. The NWS motivation

The NWS is uniquely mandated among US federal

government agencies to provide river and flash flood

forecasts for the entire US. To accomplish this

challenging mission, the NWS has deployed the

NWS River Forecast System (NWSRFS) at 13 River

Forecast Centers (RFC) and flash flood monitoring

and prediction tools at over 120 Weather Forecast

Offices (WFO) across the nation. Daily river forecasts

are currently being provided at over 4,000 points, with

high-resolution flash flood forecasts being generated

as needed. Traditionally, forecasts have been gener-

ated through the use of lumped conceptual models.

The Hydrology Lab (HL) supports the NWS mission

by conducting scientific research, software develop-

ment, and data analysis and archival for the RFCs and

WFOs. Interested readers are referred to Glaudemans

et al. (2002), Fread et al. (1995), Larson et al. (1995)

and Stallings and Wenzel (1995) for more information

regarding the NWS river and flood forecasting

mission.

Beven (1985) outlined the benefits of distributed

modeling, including the assessment of (1) the effects

of land-use change and of spatially variable inputs and

outputs; (2) pollutant and sediment movement; and

(3) the hydrological response at ungauged sites. The

NWS recognizes these advantages and sees distrib-

uted modeling as a key pathway to infuse new science

into its river and flash flood forecast operations and

services (Carter, 2002; Koren et al., 2001). In addition

to the scientific attention focused on distributed

modeling, the NWS was also motivated to expedite

its research in this area based on guidance from

National Research Council (1996).

Given the scale of the NWS mission and the

recommendations from external reviewers, it was

clear that an accelerated and focused program was

needed to move the NWS research toward operational

distributed modeling. While numerous distributed

models exist and indeed some are moving into the

operational forecasting environment (e.g. Koren and

Barrett, 1994; Turcotte et al., 2003) it is not clear from

the literature which distributed model or modeling

approach is best to improve the NWS forecasting

capabilities. With guidance from several outside

organizations, the NWS formulated DMIP as a

method to capitalize on the wealth of distributed

modeling research being conducted at academic

institutions and other organizations around the world.

With the advent of 4 km spatial resolution and

hourly temporal resolution Next Generation Radar

(NEXRAD) rainfall estimates in many parts of the

US, the NWS and the research community at large

have access to gridded rainfall estimates at unprece-

dented spatial and temporal resolution. Other parts of

the world have similar quality radar data available

(e.g. Moore and Hall, 2000). Also, the proliferation of

GIS data sets and ever-increasing capabilities of

computer systems have continued to push distributed

modeling to the forefront of hydrologic research and

application. In light of these developments, the major

question facing the NWS and perhaps other oper-

ational organizations is: what is the best way to

exploit the information in high resolution radar

rainfall estimates and GIS data sets to improve river

and flash flood forecasting? Or, in the words of Beven

(1985), under what conditions and for what type of

forecasting is it profitable to implement a distributed

model?

A review of the scientific literature did not provide

clear guidance for the NWS. Formal comparisons of

hydrologic models for river forecasting have been

conducted (e.g. Bell et al., 2001; Moore and Bell,

2001; Moore et al., 2000; WMO, 1992, 1975), but a

coherent comparison of lumped and distributed

modeling techniques has not been published. It is

encouraging that in the development and testing of

their distributed models, several authors have

included a comparison of their results to those using

lumped inputs or from simpler lumped approaches

(Bell and Moore, 1998; Boyle et al., 2001; Smith et al.,

1999; Kull and Feldman, 1998; Michaud and

Sorooshian, 1994b; Obled et al., 1994; Pessoa et al.,

1993; Naden, 1992; Loague and Freeze, 1985). In

addition, Carpenter et al. (2001, 2003) used Monte–

Carlo analysis to evaluate distributed versus lumped
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model gains in light of parametric and radar rainfall

data uncertainty.

However, we feel that a more organized and

controlled comparative effort is required to guide

NWS distributed modeling research and development.

The emergence of high-resolution data sets, GIS

capabilities, and rapidly increasing computer power

has maintained distributed modeling as an active area

of research. While the utility of distributed models to

predict interior hydrologic processes is well known,

few studies have specifically addressed the improve-

ment of distributed models over lumped models for

predicting basin outflow hydrographs of the type

useful for flood forecasting. As a consequence, the

hypothesis that distributed modeling using higher

resolution data will lead to more accurate outlet

hydrograph simulations remains largely untested.

The specific requirements of the NWS are as

follows:

(a) The distributed model should perform at least as

well in an overall sense as the current operational

lumped model. Simulation improvement should

be achieved in cases of pronounced variability in

rainfall patterns and/or physical basin features

including the hydraulic properties of interior

channels.

(b) The distributed model should be operationally

feasible in current and anticipated computational

environments.

(c) The distributed model should have reliable and

objective procedures for parameterization, cali-

bration, data assimilation, and/or error

correction.

1.2. Scientific background

Major scientific issues also point to the need for

DMIP. Among these are the continuing questions

regarding the effects of rainfall and basin feature

variability on runoff hydrographs and the level of

model complexity needed to achieve a specific

objective. Numerous studies in the past three decades

have investigated the sensitivity of runoff hydro-

graphs to spatial and temporal variations in precipi-

tation as well as basin properties. Singh (1997)

provides at least one comprehensive overview,

and a brief review is provided here to show that

mixed results have been documented.

Several of these studies examined the effects of

rainfall spatial variability in light of rain gage

sampling errors. Using data from five recording

rain gages, Faures et al. (1995) concluded that

distributed modeling on small catchments requires

detailed knowledge of the spatial rainfall patterns.

These results agreed with those of Wilson et al.

(1979), who showed that the spatial distribution of

rainfall had a marked influence on the runoff

hydrograph from a small catchment. On the other

hand, Beven and Hornberger (1982) stated that

rainfall patterns have only a secondary effect on

runoff hydrographs, while a correct assessment of

the global volume of rainfall input in a variable

pattern is more important in simulating streamflow

hydrographs. Troutman (1983) investigated the

effect of rainfall variability on estimating model

parameters. He concluded that improperly repre-

senting the rainfall over a basin due to sampling

errors would lead to overestimating large runoff

events and undersimulating small events. Sub-

sequent research with radar rainfall estimates also

contributed to these mixed results. On a small

watershed, Krajweski et al. (1991) found a greater

sensitivity to the temporal resolution of precipi-

tation than to spatial resolution. Ogden and Julien

(1994) performed synthetic tests that identified

when spatial and temporal variability of precipi-

tation is dominant.

It is interesting to note that some of these and

other studies were based on synthetically generated

precipitation and streamflow records (e.g. Watts

and Calver, 1991; Troutman, 1983; Wei and

Larson, 1971). In many cases, comparisons were

made against a reference or ‘truth’ hydrograph

generated by running the hydrologic model at the

finest data resolution (e.g. Shah et al., 1996; Ogden

and Julien, 1993, 1994; Krajewski et al., 1991;

Chandrasekar, et al., 1990; Troutman, 1983;

Hamlin, 1983). Synthetically generated data were

often used due to the lack of appropriately long

periods of observed data.

Perhaps some of the mixed results from the early

studies arose out of the use of synthetic data,

numerical studies, and the choice of the rainfall-

runoff models. Many of the studies emphasizing
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the importance of rainfall spatial variability used

models containing the Hortonian runoff generation

mechanism. It is now recognized that runoff results

from a complex variety of mechanisms and that in

some basins a significant portion of runoff hydro-

graphs is derived from slower responding subsurface

runoff (Wood et al., 1990). Obled et al. (1994)

commented that numerical experiments in the litera-

ture were based on the use of models which may be

only a crude representation of reality. Furthermore,

they argued that the actual processes at work in a

basin may not be those predicted by the model, a

caution echoed by Michaud and Sorooshian (1994a),

Shah et al. (1996) and Morin et al. (2001).

Thus, the research in the literature may have

highlighted the sensitivity of a particular model to the

spatial and temporal variability of (at times synthetic)

precipitation, not the sensitivity of the actual basin.

The work of Obled et al. (1994) is significant in that

they examined the effects of the spatial variation of

rainfall using observed precipitation and streamflow

data rather than simply model output derived using

synthetic data. In addition, the model used in their

studies focused on saturation excess runoff as the

main runoff generation mechanism. In simulations

against observed data, they were unable to prove the

value of distributed inputs as they had intended. A

semi-distributed representation of the basin did not

lead to improved simulations compared to a lumped

basin modeling scenario. The authors reasoned that

the runoff mechanism may be responsible for the lack

of improvement, noting that in runoff generation of

the Dunne type, most of the water infiltrates and local

variations in input will be smoothed. As a result, this

type of mechanism may be much less sensitive to

different rainfall patterns. Loague (1990) concluded

that revised data did not lead to significant improve-

ment in a physically based distributed model because

the model used the Hortonian mechanism while the

basin appeared to function with a combination of

Hortonian and Dunne overland flow. Michaud and

Sorooshian (1994a) recommended that more com-

parative work be performed on Hortonian versus

Dunne overland flow.

Winchell et al. (1997, 1998) extend this theme by

noting that there has been a bias towards the use of

infiltration-excess runoff mechanisms as opposed to

the saturation excess type. Their work with both types

of runoff generation mechanisms found that satur-

ation-excess and infiltration excess models respond

differently to uncertainty in precipitation. They

suggest that generalizations concerning the effects of

rainfall variability on runoff generation and variability

cannot be made. Koren et al. (1999) came to a similar

conclusion based on simulation results from several

different rainfall-runoff partitioning mechanisms.

In the midst of these efforts to understand the

importance of the variability of precipitation, a large

volume of research continues to emerge that addresses

the possibility of improving lumped hydrologic

simulations by using distributed and semi-distributed

modeling approaches containing so-called physically

based or conceptual rainfall-runoff mechanisms.

Indeed, at least one book chapter (Beven, 1985)

followed by two entire books have been published on

such models (Abbot and Refsgaard, 1996; Vieux,

2001). Recently, the availability of high-resolution

precipitation estimates from different weather radar

platforms has intensified these investigations. Many

efforts have focused on event-based modeling and

again, mixed and somewhat surprising results have

been realized.

Refsgaard and Knudsen (1996) compared a

complex distributed model, a lumped conceptual

model, and an intermediate complexity model on

data-sparse catchments in Zimbabwe. Their results

could not strongly justify the use of the complex

distributed model. Pessoa et al. (1993) found that

adequately averaged gridded precipitation estimates

from radar were just as viable as fully distributed

estimates for streamflow simulation using a dis-

tributed model on an 840 km2 basin with low

intensity rainfall. Conversely, Michaud and

Sorooshian (1994a) compared their results with

high intensity rainfall and found that simulated

runoff is greatly sensitive to space-time averaging.

Kouwen and Garland (1989) investigated the effects

of radar data resolution and attempted to develop

guidelines for the proper resolution of input rainfall

data resolution. They noted that spatially coarser

rainfall data sometimes led to better hydrograph

simulation due to the smoothing of errors present

in finer resolution rainfall information. Bell and

Moore (2000) noted a similar model response from

lower resolution rainfall information. Continuing

this theme, Carpenter et al. (2001) examined
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the gains from distributed versus lumped modeling

in view of radar data and parametric uncertainty. In

several cases a spatially lumped model response

proved to be statistically indistinguishable from a

distributed model response.

In preliminary testing limited to a single

extreme event, Kenner et al. (1996) reported that

a five sub-basin approach produced better hydro-

graph agreement than a lumped representation of

the basin. Sub-basin rainfall hyetographs revealed

spatially varied precipitation totals for the event.

Smith et al. (1999) attempted to capture the spatial

variability of precipitation using sub-basins for

several watersheds in the southern Great Plains of

the US. Using a simple semi-distributed approach

with spatially uniform conceptual model para-

meters, they were unable to realize significant

improvement over a lumped model. For a basin in

the same geographic region, Boyle et al. (2001)

concluded that eight subdivisions of a basin

provided no gain in simulation accuracy compared

to a three sub-basin representation. Apparently, the

more coarse representation of the basin captured

the essential variability of the rainfall and basin

features. However, both simulations were superior

to those from a lumped model. Naden (1992) found

that lumped modeling was appropriate for even a

large 7000 km2 basin.

Refsgaard (1997) illustrated the concepts of

parameterization, calibration, and validation of

distributed parameter models. Noting that hydrolo-

gists often assume that a distributed model

calibrated to basin outlet information will ade-

quately model interior processes, he realized poor

simulations of discharge and piezometric head at

three interior gaging stations. In contrast, Michaud

and Sorooshian (1994b) found that a complex

distributed model calibrated at the basin outlet

was able to generate simulations at eight internal

points that were at least as accurate as the outlet

simulations. These results underscore one of the

mains advantages of distributed parameter hydro-

logic modeling: the ability to predict hydrologic

variables at interior points. They also concluded

that a simple distributed model proved to be just as

accurate as a complex distributed model given that

both were calibrated and noted that model com-

plexity does not necessarily lead to improved

simulation accuracy. Studies such as this may

have caused Robinson and Sivapalan (1995) to

comment that further work is needed to fully

exploit the connection between conceptual and

physically based models to advance the science of

hydrologic prediction. The distributed modeling

work of Koren et al. (2003a,b) is one attempt to

follow this recommendation.

Bell and Moore (1998) compared a simple gridded

distributed model and its variants to a lumped model

used operationally in the UK for flood forecasting.

They concluded that a well-designed lumped model is

preferred for routine operational purposes on the

basins studied. Yet, a distributed model run in parallel

to the lumped model would provide meaningful

information in the cases of significant rainfall

variability.

Seyfried and Wilcox (1995) commented that

many have even questioned the usefulness of

complex physically based models outside of strictly

research applications, especially in light of the

effort required to parameterize, calibrate, and

implement such models.

In light of these findings, DMIP was formulated

as a focused venue to evaluate many distributed

models against both a calibrated lumped model and

observed streamflow data. Compared to some of

the earlier studies on the effects of rainfall

variability, DMIP has the advantages of multi-

year hourly time series of high resolution radar-

based rainfall estimates as well as hourly discharge

measurements at both basin outlets and several

interior points. Over seven years of concurrent

radar rainfall and streamflow data were available.

Another aspect of this venue is that researchers

would have the opportunity to evaluate their

research models with data typically used for

operational forecasting. The availability of these

data sets had already attracted several researchers

to set up and run their models on these basins (e.g.

Vieux and Moreda, 2003; Carpenter et al., 2001;

Finnerty et al., 1997; Bradley, 1997). Moreover, the

study basins are free of major complications such

as orographic influences, significant snow accumu-

lation, and stream regulation, which may mask the

effects of precipitation and basin feature variability.

The basins selected for DMIP range from 65 to

almost 2500 km2, removing the temptation to
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extrapolate conclusions from small scale hillslope

studies to larger basins of the size typically used

for operational forecasting.

2. Project design

DMIP identified the following science questions.

Some questions were explicitly addressed through the

design of the simulation tests discussed in Section 8

and Appendix B, while for others, it was hoped that

inferences could be made given a broad range of

participating models.

Can distributed models provide increased simu-

lation accuracy compared to lumped models? This

question would be addressed through the use of

multiple distributed model simulations compared to

lumped simulations for a number of basins. In the

absence of data sets such as spatial fields of soil

moisture observations, model calibration and vali-

dation would use observed streamflow data. Improv-

ing simulations at the outlet of basins is the focus of

this effort.

What level of model complexity is required to

realize improvement in basin outlet simulations?

Included in this are questions regarding the use of

conceptual versus so-called physically based models

and the size of computational elements or the use of

semi-distributed approaches. Given a group of

participating models with a wide range of complexity

and modeling scale, it was hoped that inferences could

be made about model complexity and scale.

What level of effort is required for distributed

model calibration? What improvements are realized

compared to non-calibrated and calibrated lumped

models? Participants would provide an overview of

the process to calibrate their models. Modeling

instructions explicitly called for uncalibrated and

calibrated simulations, so that the gains by calibration

could be weighed against the level of effort. Reed

et al., (2003, this issue) discuss the gains provided by

calibration.

What is the potential for distributed models set up

for basin outlet simulations to generate meaningful

hydrographs at interior locations for flash flood

forecasting? Inherent to this question is the hypo-

thesis that better outlet simulations are the result of

accurate hydrologic simulations at points upstream of

the gaged outlet. The NWS is interested in the

concept of a distributed model for forecasting both

outlet hydrographs as well as smaller scale flash

floods upstream of the gage. As noted in the

modeling instructions, calibrated and uncalibrated

simulations at various gaged and ungaged locations

at basin interior points were required. Reed et al.

(2003, this issue) evaluate these interior point

simulations.

What characteristics identify a basin as one

likely to benefit from distributed modeling versus

lumped modeling for basin outlet simulations? Can

these characteristics be quantified? Prior research

on the DMIP basins had shown that distributed

modeling to capture the essential variability of

precipitation and model parameters did not signifi-

cantly improve simulations in the Illinois River

basin. (Carpenter et al., 2001; Smith et al., 1999).

On the other hand, another basin in the same

geographic region did benefit from one level of

distributed modeling (Zhang et al., 2003; Boyle

et al., 2001). What is different between these two

cases? Through additional simulations from a

number of distributed models in DMIP, these

prior results could be verified. Given the validated

conclusion that certain basins benefit from dis-

tributed modeling, one could investigate potential

diagnostic indicators that might be used without the

expense of setting up a distributed model.

How do research models behave with forcing data

used for operational forecasting? DMIP provided a

realistic opportunity for developers to test their

research models in a quasi-operational environment.

Such exposure would hopefully identify needed

model improvements or further tests to bring such

models closer to operational use. Conversely, DMIP

could highlight the need for continued research for

improving radar or multi-sensor methods of precipi-

tation estimation.

What is the nature and effect of rainfall spatial

variability in the DMIP basins? The 7 years of

gridded radar-based rainfall values presented in DMIP

would provide modelers an opportunity to investigate

the dominant forms of rainfall spatial variability.

Moreover, through the application of multiple dis-

tributed models, we hoped to refine our understanding

of the effects of rainfall spatial variability on

simulated basin outlet hydrographs.
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In addition to these identified issues, the partici-

pants investigated other relevant questions using the

DMIP data sets. These efforts are presented in this

special issue.

3. Operational issues

As with the science questions surrounding DMIP,

issues that need to be addressed before a model can be

implemented in NWSRFS for operational use were

identified. Explicit experiments were not designed in

DMIP to address these issues. Rather, general

concepts were discussed at the DMIP workshop.

1. Computational requirements in an operational

environment. To be effective in an operationally

viable environment, the models need to be

accurate, reliable, robust, and be able to run in

real time.

2. Run time modifications and updates in an oper-

ational forecasting setting.

3. Parameterization and calibration requirements.

4. Does easier parameterization/calibration of a

physically based distributed parameter model

warrant its use, even when it might not provide

improvements over simpler lumped conceptual

models?

4. DMIP study area

4.1. Description of study basins

Figs. 1 and 2 present the basins used in the DMIP

comparison. The Illinois River draining to the USGS

gage at Tahlequah, Oklahoma (OK) straddles the

Oklahoma-Arkansas (AR) border and contains the

Illinois River basin above Watts, OK. Baron Fork

drains to the USGS gage in Eldon, OK and then joins

the Illinois River a few miles downstream. The Elk

River flowing to the USGS gage in Tiff City, Missouri

(MO) lies to the north of the Illinois basin, while the

Blue River basin lies to the south near the border with

Fig. 1. Location map of DMIP study basins. Numbers are location of USGS stream gages. Letters are locations of ungaged computational points.

Blue lines are rivers.
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Texas (TX). These basins are typical of the size used

for operational forecasting in the NWS. The numbers

in Fig. 1 signify the locations of US Geological

Survey (USGS) stream gages at forecast locations and

at interior points. Letters denote the location of

ungaged points specified for the computation of

simulations according to the DMIP modeling instruc-

tions. Hereafter, we will use the terms basin outlet and

interior point when making general statements about

the locations represented by numbers and letters,

respectively.

Fig. 2 shows the location of the basins in relation to

state boundaries and the NEXRAD radar locations. It

can be seen that all the DMIP basins are well inside

least one radar umbrella.

Table 1 presents relevant data for the basins. The

annual rainfall statistics in column five for the DMIP

data period were computed using the radar-based data,

while the corresponding climatological statistics were

computed using raingauge data. A measure of basin

shape is included in Table 1, generated by computing

a ratio of long to short basin axes. The Blue basin has

a significantly different aspect ratio compared to the

other candidate basins. Hereafter, and in Reed et al.

(2004, this issue), we will use the shortened names in

column three of Table 1 to refer to the basins.

The dominant soil types in the DMIP basins are

presented in Table 2. The table values are estimates of

percent by volume of soils for all depths reported in the

11-layer grid derived from the State Soil Geographic

(STATSGO) dataset by Miller and White (1999).

Based on visual inspection of the 11 layers for each

basin, the heavier soils tend to occur at greater depths.

For example, in the Tahlequah basin, which is mostly

SIL (silt loam), SICL (silty clay loam), and SIC (silty

clay), the SIL is generally closer to the surface with

SICL deeper and SIC even deeper. Peters and Easton

(1996) describe the Tahlequah basin as a region

comprised of porous limestone overlain by cherty

soils. Areas within the floodplain can contain gravelly

soils and may be too pervious to hold water. It is

notable that the Blue basin contains a very high

Fig. 2. Location of NEXRAD radar sites and coverage of DMIP basins. Circles denote the coverage of each radar. Radius of the radar umbrella

is 230 km.
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percentage of clay and is much different in its soil

texture composition than the other DMIP basins.

The dominant industry in the Blue, Eldon,

Tahlequah, and Tiff City basins is agriculture,

consisting primarily of poultry production and live-

stock grazing. A small percentage of the Tahlequah

basin is farmed intensively for vegetables, strawber-

ries, fruit orchards, and nurseries (Meo et al., 2002).

Approximately 90% of the Tahlequah basin is

comprised of pasture and forest (Vieux and Moreda,

2003a). The Watts basin contains the Ozark National

Forest. Fig. 3 shows the Baron Fork upstream of the

gage near Eldon, Oklahoma. Fig. 4 shows the Blue

River looking upstream from the gage near the town

of Blue, Oklahoma.

The topography of the Blue, Tiff City, Eldon, and

Tahlequah basins can be characterized as gently

rolling to hilly. In the Tiff City basin, the elevation

Table 1

DMIP basin characteristics

Full name USGS ID Referred

to as:

Area

(km2)

DMIP Period Climatology Basin Morphology

Annual

rainfall

(mm)

Annual

runoff

(mm)

Runoff

coeff.

Annual

rainfall

(mm)

Annual

runoff

(mm)

Runoff

coeff.

Climate

Longest

path

length

(km)

Longest

path

slope

(m/m)

Major–

minor

axis

ratio

Peacheater

Creek at

Christie,OK

7196973 Christie 65 1213 317 0.26 1157 313 0.27 20.7 0.007 2.6

Flint Creek at

Kansas, OK

7196000 Kansas 285 1197 369 0.31 1157 329 0.28 43.7 0.004 2.7

Illinois River

at Savoy, OK

7194800 Savoy 433 1246 378 0.30 1179 347 0.29 41.0 0.006 1.2

Baron Fork at

Eldon, OK

7197000 Eldon 795 1238 437 0.35 1175 340 0.29 67.2 0.005 2.1

Blue River at

Blue, OK

7332500 Blue 1,233 1041 228 0.22 1036 176 0.17 144.3 0.002 6.2

Illinois River

at Watts, OK

7195500 Watts 1,645 1208 383 0.32 1160 302 0.26 82.3 0.003 1.5

Elk River at

Tiff City, MO

7189000 Tiff City 2,251 1269 346 0.27 1120 286 0.26 109.7 0.003 1.0

Illinois River

at Tahlequah,

OK

7196500 Tahlequah 2,484 1211 376 0.31 1157 300 0.26 163.8 0.002 1.7

Table 2

Dominant soil types for the DMIP study basins

Basin S LS SL SIL SI L SCL SICL CL SC SIC C

Christie 0.0 0.0 0.0 26.7 0.0 0.0 0.0 22.6 0.9 0.0 46.6 3.2

Kansas 0.0 0.0 0.0 25.4 0.0 0.0 0.0 24.6 0.0 0.0 50.0 0.0

Savoy 0.0 0.0 7.0 14.2 0.0 1.5 4.4 17.8 5.8 0.0 49.4 0.0

Eldon 0.0 0.0 3.4 26.4 0.0 0.7 2.2 16.5 3.4 0.0 45.5 1.9

Blue 0.9 0.0 6.7 0.0 0.0 16.3 6.9 7.5 8.1 8.3 0.3 45.0

Watts 0.0 0.0 1.9 21.7 0.0 0.4 1.2 23.2 1.7 0.0 49.7 0.2

Tiff City 0.0 0.0 0.0 25.8 0.0 0.0 0.0 30.5 0.0 0.0 39.8 3.9

Tahlequah 0.0 0.0 1.4 25.9 0.0 0.3 1.0 22.1 1.1 0.0 48.0 0.2

Values are % by volume of the soil texture. S, sand; LS, loamy sand; SL, sandy loam; SIL, silt loam; SI, silt; L, loam; SCL, sandy clay loam;

SICL, silty clay loam; CL, clay loam; SC, sandy clay; SIC, silty clay; C, clay.
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above sea level varies from approximately 229 m at

the USGS stream gage to 457 m at the basin edge. The

Blue basin rises from an elevation of 154 m at the

gage to about 427 m in the basin interior, while the

Eldon basin ranges in elevation from 214 m to about

443 m. The Tahlequah basin, which contains the Watts

catchment, varies in elevation from 202 m to around

486 m above sea level.

Fig. 5 presents a semi-log plot comparing observed

mean daily flows for the study basins. The discharge

values have been scaled to the drainage area of the

Watts basin. It can be seen that the Watts, Eldon,

Fig. 3. Baron Fork at the USGS gage located near Eldon, Oklahoma. The view is looking upstream from the highway bridge.

Fig. 4. The Blue River looking upstream from highway bridge at USGS gage near Blue, Oklahoma. Picture taken in November, 1999.
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Tahlequah, and Tiff City basins behave somewhat

similarly with small variations in the hydrograph

recession rates. On the other hand, Blue exhibits quite

distinguishable behavior with much less base flow and

quickly falling hydrograph recessions.

Field trips were conducted on two different

occasions. Personnel from the NWS and the Univer-

sity of Arizona examined points in the Eldon, Watts,

and Tahlequah basins in 1997, while a three day visit

to the Blue basin in November, 1999 was made by

NWS scientists to collect cross-section measure-

ments. Fig. 6 presents a few of these cross sections.

4.2. Rationale for basin selection

The study basins in Fig. 1 were selected for several

reasons. First, these basins had the data required to

conduct the intercomparison, beginning with the

longest and highest quality archive of NEXRAD

radar-based precipitation estimates in the US. The

NWS began measuring precipitation with NEXRAD

radars in this region in 1993, providing the DMIP

project with nearly 8 years of continuous hourly

gridded precipitation estimates. The NEXRAD radars

in this area provide good coverage of the study basins

as shown in Fig. 2. Also, several pertinent studies of

the quality of the NEXRAD precipitation estimates in

this region have been performed. (e.g. Young et al.,

2000; Wang et al., 2000; Smith et al., 1999; Johnson

et al., 1999; Finnerty and Johnson, 1997; and Smith

et al.,1996). Concurrent time series of hourly

discharge data were also available for the basin

outlets and selected interior points.

Fig. 5. Semi-log plot of observed streamflow for the DMIP basins. Discharge values have been scaled to a common drainage area.

Fig. 6. Selected cross-sections for the Blue River. Cross section 1 is

located at the USGS gage. Sections are plotted in meters above

mean sea level (msl).
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Another critical criterion for selecting basins in this

region is the lack of complications such as significant

snow accumulation, orographic influences, and modi-

fication of the streamflow due to reservoirs. Moreover,

the selected parent basins contain several internal

points having observed streamflow data, allowing the

DMIP program to develop study questions regarding

the prediction of interior hydrologic processes.

The Illinois River flowing through Arkansas and

Oklahoma presented a good opportunity for partici-

pants to test their models on nested basins as seen in

Fig. 1. The Eldon basin has an interior gage on

Peacheater Creek at Christie, OK. Next to the Eldon

basin is the Watts basin, which contains the catchment

draining to the USGS gage at Savoy, AR. Both

the Watts and Kansas basins are nested within the

largest basin, the Illinois River above Tahlequah, OK.

Thus, the Tahlequah basin contains three interior gage

locations.

The Tiff City and Blue basins have no interior gage

locations. These two basins represent additional cases

for testing and comparison of distributed hydrologic

models. The Blue basin was selected for its long

narrow shape, while the Tiff City basin was selected

for its large size and rounded shape.

Lastly, the hydrology of the area has been widely

studied by others. Finnerty et al. (1997) and Koren

et al. (1999) performed model scaling studies using

the radar-based precipitation data from the Watts,

Tahlequah, and Eldon basins, while Smith et al.

(1999) used data from these basins to begin radar-

based lumped and distributed modeling research for

the NWS. Carpenter et al. (2001) examined the

performance of distributed models in this region in

light of rainfall and parameteric uncertainty. Kalinga

et al. (2003), Zhang et al. (2004) and Boyle et al.

(2001) compared semi-distributed and lumped mod-

eling approaches on the Blue basin. Bradley and

Kruger (1998) developed a strategy for adjusting

model parameters for use with radar-based precipi-

tation estimates when they were originally calibrated

with rain gage data. Smith et al. (1996) compared

radar and rain gage-based precipitation estimates,

while Seo and Smith (1996) studied the climatological

variability of surface runoff. Vieux and Moreda

(2003b) and Vieux (2001) used the Blue and Illinois

River basins, respectively, in the discussion of many

aspects of distributed modeling related to GIS.

Peters and Easton (1996) used the Illinois River

basin to test a method for linear routing of gridded

rainfall excess amounts. Bradley and Smith (1994)

and Smith et al. (1994) documented the hydrometeor-

ology and space-time nature of extreme rainfall events

in this region. In addition, the Illinois River basin was

one of six calibration/validation basins in the recent

Project for Intercomparison of Land-surface Parame-

terization Schemes (PILPS) Phase 2(c) Red-Arkansas

River Basin Experiment (Wood et al., 1998).

5. Schedule

The major activities for the DMIP effort took place

according to the schedule in Table 3. One major

complication was that while some participants sub-

mitted their simulations by the March 31, 2002

deadline, other participants were quite late, submitting

their simulations within one week of the DMIP

workshop at NWS headquarters in August, 2002.

This spread of submissions allowed some participants

more time to refine their results. Reed et al. (2003, this

issue) identify the submission dates of the various

participants.

6. SAC-SMA and calibration

For the NWS, one of the primary requirements for

distributed modeling is that the model should equal

Table 3

Schedule for major DMIP activities

Date Task

January, 2000 Basic DMIP plan approved by NWS/HL

May 31, 2000 General Announcement of DMIP at Town

Hall Meeting, AGU spring Meeting,

Washington, DC

June 1, 2000 DMIP plan completed

December 2000 General Announcement to participate

in DMIP DMIP web site officially opened.

January 1, 2001 1. All data in place for Illinois River Basins,

Elk River Basin and Blue River Basin

2. Metadata and utilities in place

March 31, 2002 Participants send results to HL for analysis

August 22-23, 2002 DMIP workshop at NWS/HL

September 30, 2002 Participants verify that analyzed

simulations are correct

January 31, 2003 Deadline for any follow-up submissions.
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or improve upon the performance of the current

operational lumped approach. To examine this

concern, simulations in DMIP were compared to

both observed hourly streamflow and to simulations

from the current NWS operational model, the

Sacramento Soil Moisture Accounting Model

(SAC-SMA). The SAC-SMA is a two-layer concep-

tual model that generates a number of runoff

components. Interested readers are referred to

Finnerty et al. (1997) and Burnash (1995) for more

information. The SAC-SMA model was calibrated

following the NWS manual procedure outlined in

Smith et al. (2003). Subsequently, the calibrations

were evaluated by an independent expert. Another

indication as to the quality of the calibration is that

the process resulted in a logical and spatially

consistent set of parameters (Koren et al., 2003a,b).

Uncalibrated simulations for the lumped model were

made using the a priori parameter estimates pio-

neered by Koren et al. (2000) and subsequently used

by Duan et al. (2001). While these parameters are

derived from soil texture data, they nonetheless still

require further calibration. In this way they meet the

criteria in the DMIP Modeling Instructions (Section

8) that called for participants to use initial/uncali-

brated parameters in specific cases.

7. Data

Every effort was made to encourage participatin in

DMIP. As such, all data needed for most models were

assembled and made available through a website/ftp

site. A brief discussion of each data set is presented.

7.1. Digital elevation model (DEM) data

Participants were free to use any DEM data

available. However, to encourage participation in

DMIP, DEMs of two different resolutions were

provided: 15 arc s DEM data and 1 arc s data. DMIP

did not require the use of any particular DEM or

modeling resolution. The only constraint was that

modelers had to discretize the basin so that simu-

lations could be produced at the required locations.

The NWS National Operational Hydrologic

Remote Sensing Center (NOHRSC) created a

15 arc s national DEM by resampling 3 arc s DEMs

(1:250,000 scale) distributed by the US Geological

Survey. These data represent sampled elevations at

regularly spaced, 15 arc-second (0.00416668) inter-

vals, in geographic coordinates.

The 1 arc s (30 m) data covering the DMIP study

areas were made available for this project as an

offshoot of the National Basin Delineation project

underway at NOAA’s National Severe Storms

Laboratory (NSSL). The primary goal of the National

Basin Delineation project is to provide small-basin

boundaries for the NWS Flash-flood Monitoring and

Prediction Program (FFMP). To produce the small-

basin boundaries, NSSL is cooperating with the USGS

EROS data center to use the 1 arc s DEM data

available from the USGS National Elevation Dataset

(NED) project. NSSL organizes their data processing

efforts by eight digit USGS Hydrologic Cataloging

Unit (HUC) boundaries. Initial processing steps

include:

1. buffering the HUC boundary of interest to allow for

differences in ridgelines defined by the DEM and

defined by the digitized HUCs

2. merging the required 7.5 minute blocks of DEM

data into a seamless data set covering the HUC of

interest

3. projecting the seemless data set to allow for correct

analysis using Arc/Info software

4. ‘filling’ the DEM to eliminate artificial sinks

(using the Arc/Info fill command).

The filled DEMs (product of Steps 1–4) for HUCs

covering the DMIP basins were made available.

7.2. Channel cross-sections

Representative cross-sections were provided for

only the Blue basin. These were derived from three

sources of data:

1. Measurements taken during a site visit.

2. Measurements taken from bridge plans at selected

locations.

3. Data from hydraulic computations for bridge pier

scour analyses.

Two types of cross-section data were provided.

The first type of cross-section has absolute elevations
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expressed in meters above mean sea level (msl).

These cross-sections were compiled from sources 1, 2

and 3 above in which the elevations were derived

from surveyed bench marks. In some cases, the valley

section as well as the channel cross-section are

described in order for the user to get a more accurate

picture of the surrounding terrain.

The second type of channel cross-section has

relative elevations. These cross-sections were derived

from measurements taken during a site visit and are

not referenced to known elevations above mean sea

level. Rather, the elevation coordinates of the section

are relative and must be adjusted to fit to the elevation

of the digital elevation model at that location. In all

cases, the cross-section data reflect a representative

channel at that location. Fig. 6 presents a plot of

selected cross-sections showing the diversity of

channel and valley shapes. Photographs were pro-

vided on the DMIP web site showing the channel

where the cross-sections were derived.

7.3. Observed streamflow data

Provisional instantaneous hourly flow data were

obtained from USGS local offices. Some quality

control of the provisional hourly data obtained from

the USGS was performed at NWS-HL. Quality control

was a manual and subjective process accomplished

through visual inspection of observed hydrographs.

Flow values were not interpolated during this quality

control. Most commonly, suspect portions of the

hydrograph were simply set to missing. Hydrographs

sections with (1) a sudden rise and no rain, (2) a sudden

fall, or (3) a perfectly horizontal slope were candidates

for correction. In many cases, the suspicious portions

of the hydrographs identified at HL corresponded to

missing data in the quality-controlled USGS mean

daily flow record. Thus, setting the hourly data to

‘missing’ during these periods seemed justified. In

some cases, the hourly flow data were compared to the

quality-controlled mean daily flow data from USGS.

Also, the hourly flow data were converted to Green-

wich mean time (GMT) to correspond to the radar data.

7.4. Radar-based precipitation data

Rainfall forcing data in the form of NEXRAD

gridded estimates were made available through

the NWS web-accessible archive. Hourly gridded

files covering the study basins had a nominal 4 km by

4 km resolution. This grid, referred to as the hydrologic

rainfall analysis project (HRAP) grid, is based on the

polar stereographic projection. It is a subset of the

limited fine mesh (LFM) grid used by the nested grid

model (NGM) at the NWS National Centers for

Environmental Prediction (NCEP). For further details

of this mapping, the reader is referred to Reed and

Maidment (1999) and Greene and Hudlow (1982).

Along with the data, software code segments were

supplied to enable participants to easily extract the

pertinent sections covering the basins. Examples were

also provided so that participants could check their

processing.

The precipitation estimates provided to DMIP

were copies of the operational data sets created by the

NWS Arkansas-Red Basin (ABRFC) RFC in Tulsa,

Oklahoma. In this way, participants were given the

opportunity to evaluate their models with operational-

quality data. A detailed description of the precipi-

tation processing algorithms is beyond the scope of

this paper. Interested readers are referred to Young

et al. (2000), Seo et al. (1999), Fulton et al. (1998) and

Seo (1998) for more information.

7.5. Soil texture

Soil texture data at the study basin scale in

geographic (latitude/longitude) coordinates were pro-

vided in ASCII format. The texture data provided on

the DMIP site are a subset of data grids produced at

the Pennsylvania State University using State Soil

Geographic (STATSGO) data (Miller and White,

1999). Soil texture classes include: sand, silt, clay, and

various mixtures such as sandy loam and silty clay

loam. Textures are specified for up to 11 layers.

7.6. Meteorological data

Meteorological forcing data other than the NEX-

RAD precipitation estimates were provided to the

DMIP effort. Two sources were used. One set of data

consists of so-called reanalysis data generated from a

numerical weather prediction model. The other set

consisted of observed data.

The first set of energy forcing fields for the DMIP

basins were obtained from the Environmental
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Modeling Center (EMC) of the NCEP Climate

Prediction Center (CPC). The hourly forcing data

were obtained by converting global 6-hourly reana-

lysis data to hourly data on 1/8th degree grid. The

process involves interpolation in time and space,

elevation correction (for air temperature, specific

humidity, downward long-wave radiation and surface

pressure), zenith angle correction for downward solar

radiation, and fine tuning for air temperature using

reanalysis 6-hourly maximum and minimum

temperature.

The second set of data was derived from the 1/8

degree gridded data files developed by the University

of Washington (Maurer et al., 2002). These data

included air temperature, incoming shortwave and

longwave radiation, atmospheric density, pressure,

and vapor pressure, and wind speed. Most of these

variables were not direct measurements but rather

values calculated from other observations.

7.7. Greenness fraction

Monthly greenness fraction files are derived based

on advanced very high resolution radiometer

(AVHRR) data (Gutman and Ignatov, 1997). The

spatial resolution of these data is 0.1448, or approxi-

mately 16 km.

7.8. Free water surface evaporation data (PE)

Participants were also provided climatic monthly

mean values of potential evaporation (PE) demand in

mm/day. These values were derived using infor-

mation from seasonal and annual free water surface

(FWS) evaporation maps in NOAA Technical Report

33 (Farnsworth et al., 1982) and mean monthly station

data from NOAA Technical Report 34 (Farnsworth

and Thompson, 1982). Summing the monthly values

yields results consistent with the annual and seasonal

maps in NOAA Technical Report 33. Mean monthly

FWS evaporation estimates are used as PE estimates

in the NWS lumped calibrations using the Sacramento

model. In the Sacramento model, PE values are

adjusted to account for the effects of vegetation to

produce ET Demand values; however, the values

provided for DMIP were unadjusted PE values.

7.9. Vegetation data

Seventeen categories of vegetation defined by the

International Geosphere-Biosphere Program (IGBP)

classification system (Eidenshink and Faundeen,

1994) were provided in a 1 km gridded data set.

8. Modeling instructions

DMIP participants were asked to follow explicit

instructions for calibrating and running their models

in order to address the science questions listed in

Section 2, Project Design. Appendix B lists the

explicit instructions. In the analysis of DMIP results

(Reed et al., 2003, this issue), readers will be referred

to Appendix B for the naming of simulations. Other

than following the modeling instructions, the only

constraints were:

(a) Only the archived NEXRAD radar-based rainfall

estimates were to be used for precipitation

forcing.

(b) Participants had to discretize their basin

representations so that the required simulations

could be derived.

While not an explicit constraint, continuous

rather than event simulations were encouraged as

the NWS uses continuous models for all of its

forecasting. Indeed, one participant submitted event

simulations. To allow for a meaningful ‘warm-up’

period for the continuous models, the evaluation

statistics were computed for the period starting April

1, 1994, well after the June 1, 1993 start of the

calibration period. Moreover, no updating was

allowed, as this phase of DMIP did not include a

forecast component. All model runs were generated

in simulation mode. Participants were instructed to

calibrate their models by comparing observed and

simulated streamflow only at the designated basin

outlet during the calibration period. Even though

observed streamflow data existed at some interior

nested locations, modelers were asked to ignore

these data in the calibration process. One emphasis

of DMIP was to assess how well distributed models

predict streamflow at interior locations, especially at

ungaged sites.
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Modelers were asked to generate and submit to

HL two basic types of simulations at specified

points. The first type of simulation was generated

using initial or uncalibrated values of the hydrologic

model parameters (and any hydraulic routing

parameters). This test was intended to determine

how well so-called ‘physically based’ models per-

form with parameters derived from physical data.

Participants submitted their uncalibrated simulations

from both the calibration and verification periods.

The second type of simulation was generated after

hydrologic and hydraulic model parameters are

calibrated at the basin outlet. This simulation is

meant to show how much calibration is required and

what improvement in simulation accuracy is gained.

Participants submitted their simulations (using

calibrated parameters) for both the calibration and

verification periods.

During the same model runs to generate the basin

outlet hydrographs (with both calibrated and uncali-

brated parameters), participants were required to

simultaneously generate simulations at two types of

interior points. The first type of interior point is

where observed streamflow data are available. As

stated above, there should be no calibration using

these interior observed data. These ‘blind’ simu-

lations were used to assess how well interior

processes can be simulated when calibration was

performed using only basin outlet data. Not all of

the basins have observed interior streamflow data.

The second type of point is an ungaged location

along the main channel or a major tributary of the

basin. These simulations were analyzed by HL

personnel to assess the variability of simulations

from the various distributed models. Consequently,

participants had to discretize their models in order

to generate the interior hydrographs at the specified

locations.

9. Participants

The NWS was pleased with the number of

participants in DMIP. As discussed in Reed et al.

(2003, this issue), the participants used models ranging

from complex physically based distributed models to

sub-basin approaches using lumped conceptual

models. Such a diverse group of models provided a

wealth of data that the NWS can use to assess its

distributed modeling development. The following

institutions and lead investigators participated in

DMIP:

1. Massachusetts Institute of Technology, Dr Rafael

Bras

2. Hydrologic Research Center, Dr Konstantine

Georgakakos

3. DHI Water and Environment, Dr Michael Butts

4. University of Arizona, Dr Hoshin Gupta

5. NCEP/EMC, Dr Kenneth Mitchell, Dr Dag Loh-

man, Dr Christa Peters-Lidard

6. University of Oklahoma, Dr Baxter Vieux

7. University of Waterloo, Ontario, Dr Allyson

Bingeman

8. Utah State U., Dr David Tarboton and National

Institute of Water Research, (NIWR), New

Zealand, Dr Ross Woods.

9. NWS HL, Dr Michael Smith

10. USDA ARS, Dr Jeff Arnold and TAES Blackland

Research Center, Dr Mauro Di Luzio

11. University of California at Berkeley, Dr Xu Liang

12. The Hydraulic and Electrical College of WuHan

University, China, Dr Li Lan.

10. Evaluation of results

As mentioned earlier, DMIP was formulated as a

comparison of distributed models amongst them-

selves as well as to the existing NWS operational

lumped conceptual model. Goodness-of-fit statistics

were selected and relative improvement measures

were derived in order to provide objective answers

to the DMIP science questions in Section 2 of this

paper. These statistical evaluations were performed

on continuous run periods and isolated rainfall-

runoff events (see Reed et al., 2004, this issue) since

previous experience in HL showed distributed

model gains for specific events (compared to

lumped models) are not always readily apparent in

statistics for the entire run period. These statistics

were approved by the DMIP participants during the

course of the project. Appendix A presents all of the

formulae used in the analysis by Reed et al. (2004,

this issue).
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11. Summary

DMIP represents perhaps the first organized and

published comparison of distributed models amongst

themselves and to a widely used lumped model. This

project was designed to address several long-standing

questions in hydrologic modeling and to guide NWS

research and development toward distributed model-

ing for improved forecasting of US rivers and streams.

Of primary interest to the NWS is the practical

question: can distributed models reliably generate

more accurate streamflow simulations that the exist-

ing operational lumped model? A related question is:

can a distributed model, calibrated with limited data

(i.e. basin outlet discharge information), provide

meaningful hydrologic simulations at interior

ungaged locations for flash flood simulation?

As seen in the paper by Reed et al. (2004, this issue),

DMIP proved to be a successful intercomparison of

distributed models having a wide range of complexity.

Simulations from models founded on the numerical

solutions to the physics equations of water movement

were compared to those from simpler conceptual

approaches applied to sub-basins. Moreover, DMIP

was a venue in which research models were exposed to

operational-quality data typically used for river

forecasting. This exposure served to highlight the

need for continued improvements in the estimation of

rainfall, as well as providing researchers with a

rigorous opportunity to further develop their models.

While DMIP was limited in scope to basins in the

southern Great Plains, we feel that a wealth of

information was generated that is of interest to the

international hydrologic research and operational

communities.
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Appendix A. Statistics used in the analysis of DMIP
results

Widely used statistics were selected to compare the

DMIP simulations to observed streamflow and to

simulations from the NWS operational lumped model.

Measures of relative improvement were developed to

specifically measure the gain in simulation accuracy

realized by using a distributed versus a lumped model.

Percent bias, PB (%):

PB is a measure of total volume difference between

two time series, and is important in the evaluation of

simulations from continuous hydrologic models. PB is

computed as:

PB ¼

XN

i¼1
ðSi 2 OiÞXN

i¼1
Oi

£ ð100Þ

where Si is the simulated discharge for each time step

i; Oi is the observed value, and N is the total number

of values within the time period of analysis.

Simulated or observed mean:

�Y ¼

XN
i¼1

Yi

N

where Y is any type of data value.

Standard Deviation, s :

sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðYi 2 �YÞ2

N 2 1

vuuuut
Correlation coefficient, r

While not used explicitly in the DMIP results

paper by Reed et al. (2004, this issue), we present
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the formula for the correlation coefficient as

background for the discussion on the modified

correlation coefficient. The correlation coefficient r

is defined as:

r¼
N
XN

i¼1
SiOi2

XN

i¼1
Si

XN

i¼1
Oiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
XN

i¼1
S2

i 2
XN

i¼1
Si

� �2
� 	

N
XN

i¼1
O2

i 2
XN

i¼1
Oi

� �2
� 	s

Modified correlation coefficient, Rmod (McCuen and

Snyder, 1975)

Recognizing the tendency of the correlation

coefficient to be overly influenced by outliers and to

be insensitive to differences in the size of hydro-

graphs, McCuen and Snyder (1975) developed a

modified correlation coefficient. We select this

statistic to objectively compare hydrographs for

specific rainfall/runoff events. In this statistic, the

normal correlation coefficient is reduced by the ratio

of the standard deviations of the observed and

simulated hydrographs. The minimum standard devi-

ation (numerator) and maximum standard deviation

(denominator) is selected so as to derive and

adjustment factor less than unity:

rmod ¼ r
min{ssim;sobs}

max{ssim;sobs}

Nash–Sutcliffe efficiency, R2

The coefficient of efficiency R2 (Nash and

Sutcliffe, 1970) is widely used to evaluate hydrologic

model simulations. R2 is defined as:

R2 ¼ 1:0 2

XN

i¼1
ðSi 2 OiÞ

2XN

i¼1
ðOi 2 �OiÞ

2

In physical terms, R2 is the ratio of the residual

variance to the initial or ‘no-model’ variance, and

represents the proportion of the initial variance

explained by the model. Values of R2 vary from

negative infinity to 1.0. Values closer to 1.0 indicate

good agreement, while negative values of R2 indicate

that the observed mean is a better predictor than the

model.

The following aggregate statistics were generated

for selected individual events.

(a) Percent absolute event runoff error, Er; (%)

This is the absolute value of the runoff bias

from several events expressed as a percentage:

Er ¼

XN
i¼1

lBil

NYavg

£ 100

(b) Percent absolute peak error, Ep; (%)

This is the absolute value of error in peak

discharge for several events expressed as a

percentage:

Ep ¼

XN
i¼1

lQpi 2 Qpsil

NQpavg

£ 100

(c) Percent absolute peak time error, Et; (h)

This is the absolute value of the error in peak

time for several events expressed as a percen-

tage:

Et ¼

XN
i¼1

lTpi 2 Tpsil

N
£ 100

where:

Bi is the runoff bias per i-th flood event, mm,

Yavg is the average observed flood event runoff,

mm,

Qp;i is the observed peak discharge of the i-th

flood event, m3 s21,

Qps;i is the simulated peak discharge of the i-th

flood event, m3 s21,

Qp;avg is the average observed peak discharge,

m3 s21,

Tp;i is the observed time to the i-th peak, h,

Tps;i is the simulated time to the i-th peak, h, and

N is the number of selected events.

The following relative improvement statistics were

computed to quantify the gains in simulation accuracy

realized from the use of distributed models versus the

NWS lumped operational model. These statistics were

computed to evaluate one of the fundamental ques-

tions posed in DMIP: can a distributed hydrologic

model generate more accurate basin-outlet simu-

lations than a lumped model?
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(a) Flood runoff improvement Iy; %

This statistic measures the improvement in

computed runoff volume:

Iy ¼

XN
i¼1

ðlYi 2 Ys;il2 lYi 2 Yz;ilÞ

NYavg

£ 100

(b) Peak flow improvement Ip; %

This statistic quantifies the gain in simulating

the peak event discharge:

Ip ¼

XN
i¼1

ðlQp;i 2 Qps;il2 lQp;i 2 Qpz;ilÞ

NQp;avg

£ 100

(c) Peak time improvement It

This statistic measures the improvement in

simulated peak time:

It ¼

XN
i¼1

ðlTp;i 2 Tps;il2 lTp;i 2 Tpz;ilÞ

N

where:

Yi is the observed runoff volume of the i-th

flood, mm

Ys;i is the (distributed model) simulated runoff

volume of the i-th event, mm

Yz;i is the (lumped model) simulated runoff of

the i-th flood to compare with, mm

Yavg is the average observed flood event runoff

volume of N events, mm

Qp;i is the observed peak discharge of the i-th

event, m3 s21

Qps;i is the (distributed model) simulated peak

discharge of the i-th event, m3 s21

Qpz;i is the (lumped model) simulated peak

discharge, m3 s21

Qp;avg is the average observed peak discharge of

N events, m3 s21

Tp;i is the observed time of the i-th peak, h

Tps;i is the (distributed model) simulated time of

the i-th peak, h

Tpz;i is the (lumped model) simulated time to

i-th peak, h

N is the number of selected events.

Appendix B. Specific modeling instructions

The following specific modeling instructions for

the DMIP basins were designed to address the science

and operational questions outlined earlier. Partici-

pants were asked to follow these instructions

explicitly and to set up their models so that the

required simulations could be generated.

1. Model run periods

1. Calibration period: May 1, 1993 to May 31,

1999

2. Verification period: June 1, 1999 to July 31,

2000

2. Simulations should have an hourly time step or

have an ordinate spacing that includes hourly

values to facilitate comparison to the USGS

observed hourly discharge data.

3. Illinois River Basin: Baron Fork with basin outlet

at USGS gage 07197000 at Eldon, Oklahoma.

Drainage area 795 km2. USGS gage location:

Lat. 3585501600 Lon. 9485001800, on downstream

left abutment of bridge on State Highway 51,

0.64 km southeast of Eldon.

a. Generate two simulations at the basin outlet

that span both the calibration and validation

periods:

1. with uncalibrated/initial parameters

2. with calibrated parameters

b. While generating the two basin outlet sim-

ulations, compute interior simulations at:

1. Peacheater Creek at USGS gage

07196973 at Christie, OK. drainage

area 65 km2. Gage: Lat. 3585701700

Lon. 9484104600, 0.64 km upstream of

junction with Baron Fork. No cali-

bration is allowed using observed

streamflow data at this point. It is to

be a ‘blind’ simulation.

2. Ungaged location on channel at Lat.

3585403800, Lon. 9483201600, drainage

area 151.3 km2 (Note: before

2/23/2002, the area estimate given on

this site was 208.9 km2. The 208.9

estimate was derived using a 400 m

resolution DEM (See DMIP DEM data

page.), but there is a big discrepancy

between this area and the area derived
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from the 30 m DEM (151.3 km2). We

believe the area derived from the 30 m

DEM is more accurate.

4. Illinois River Basin: Illinois River with basin

outlet at USGS gage 07195500 at Watts,

Oklahoma. Drainage area 1,645 km2. USGS

gage location: Lat 3680704800 Lon 9483401900, on

downstream side of pier of bridge on Highway

59, 2.4 km north of Watts.

a. Generate two simulations at the basin outlet

that span both the calibration and validation

periods:

1. with uncalibrated/initial parameters

2. with calibrated parameters

b. While generating the two basin outlet

simulations, compute interior simulations at:

1. Illinois River at USGS gage 07194800

at Savoy, Arkansas. Drainage area

433 km2. Gage: Lat. 3680601100, Lon.

9482003900

2. Ungaged location on channel at Lat.

368205300, Lon. 9481901600, drainage area

198.1 km2.

5. Illinois River Basin: Illinois River with basin

outlet at USGS gage 07196500 at Tahlequah,

Oklahoma. Drainage area: 2.484 km2. Gage

location: Lat. 3585502200, Lon. 9485502400,

0.32 km downstream from US Highway 62,

3.5 miles northeast of Tahlequah.

a. Generate two simulations at the basin outlet

that span both the calibration and validation

periods:

1. with uncalibrated/initial parameters

2. with calibrated parameters

b. While generating the 2 basin outlet simu-

lations, compute interior simulations at:

1. Illinois River at USGS gage in Watts,

OK.

2. Illinois River at USGS gage in Savoy,

Arkansas.

3. Flint Creek at USGS gage 07196000 in

Kansas, OK. Drainage area 285 km2.

Gage location: Lat. 3681101100, Lon.

9484202400 upstream from bridge on US

Highway 412. (Note: no specific cali-

bration using observed streamflow at

these points, even though calibration

was performed for the Illinois River at

Watts, OK for the runs in item B.4

above.).

6. Elk River with basin outlet at USGS gage

07189000 in Tiff City, Missouri. Drainage area

2.251 km2. Gage location: Lat. 3683705300 Lon.

9483501200, on bridge on State Highway 43,

4.83 km southeast of Tiff City.

a. Generate two simulations at the basin outlet

that span both the calibration and validation

periods:

1. with uncalibrated/initial parameters

2. with calibrated parameters

b. While generating the two basin outlet

simulations, compute interior simulations

at ungaged location on channel at Lat.

3683503800, Lon. 948901700, drainage area

318.4 km2. (Note: there is no interior

observed streamflow for this basin).

7. Blue River with designated basin outlet at USGS

gage 07332500 in Blue, Oklahoma. Drainage

area 1.233 km2. Gage location: Lat. 3385904900

Lon. 9681402700, on bridge on US Highway 70,

1.61 km west of Blue, Oklahoma.

a. Generate two simulations at the basin outlet

that span both the calibration and validation

periods:

1. with uncalibrated/initial parameters

2. with calibrated parameters

b. While generating the two basin outlet simu-

lations, compute interior hydrographs at:

1. Ungaged location on main channel of

the Blue River at Lat. 3483002400, Lon.

9684003000, drainage area 153.2 km2

2. Ungaged location on main channel of

the Blue River at Lat. 3482603900, Lon.

9683703000, drainage area 302.7 km2.

(note: there is no interior observed

streamflow for these two points).
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